On the reverse mathematics of Peano categoricity

Keita Yokoyama
(joint work with Stephen G. Simpson)

Tokyo Institute of Technology/ Pennsylvania State University

February 21, 2012, Tokyo JAPAN
Workshop on Proof Theory and Computability Theory 2012
Outline

1 Introduction
 - Peano system
 - Reverse Mathematics

2 RM of Peano categoricity
 - over RCA_0
 - over RCA_0^*

3 Other categoricity theorems
 - system of order
 - system of order and successor function
Outline

1. Introduction
 - Peano system
 - Reverse Mathematics

2. RM of Peano categoricity
 - over RCA
 - over RCA*

3. Other categoricity theorems
 - system of order
 - system of order and successor function
Peano system is a system of a successor function and second-order induction axiom.

Definition

A Peano system is a triple \((M, e, f)\) where \(M\) is a set, \(e \in M\) and \(f : M \rightarrow M\) is a function such that

1. \(f\) is one-to-one,
2. \(\forall x \in M \ f(x) \neq e\),
3. induction: for any \(Z \subseteq M\),

\[(e \in Z \land \forall x \in Z(f(x) \in Z)) \rightarrow \forall x(x \in Z). \]
Dedekind’s theorem

It is well-known that Peano system is categorical in the following sense.

Theorem (Dedekind 1888)

Any two Peano system is isomorphic.

In other words, every Peano system is isomorphic to $\mathbb{N} = (\mathbb{N}, 0, S)$.

Proof.

Let (M, e, f) be a Peano system.
Define $A = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\}$.
Then, by induction, $A = M$.
$\Phi(x) = \min\{n \mid f^n(e) = x\}$ is the desired isomorphism.
Dedekind’s theorem

It is well-known that Peano system is categorical in the following sense.

Theorem (Dedekind 1888)

Any two Peano system is isomorphic.

In other words, every Peano system is isomorphic to \(\mathbb{N} = (\mathbb{N}, 0, S) \).

Proof.

Let \((M, e, f)\) be a Peano system.

Define \(A = \{ x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x \} \).

Then, by induction, \(A = M \).

\(\Phi(x) = \min\{ n \mid f^n(e) = x \} \) is the desired isomorphism. \(\square \)
Dedekind’s theorem

It is well-known that Peano system is categorical in the following sense.

Theorem (Dedekind 1888)

Any two Peano system is isomorphic.

In other words, every Peano system is isomorphic to \(\mathbb{N} = (\mathbb{N}, 0, S) \).

Proof.

Let \((M, e, f)\) be a Peano system.

Define \(A = \{ x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x \} \).

Then, by induction, \(A = M \).

\(\phi(x) = \min \{ n \mid f^n(e) = x \} \) is the desired isomorphism. \(\square \)
Dedekind’s theorem

It is well-known that Peano system is categorical in the following sense.

Theorem (Dedekind 1888)

Any two Peano system is isomorphic.

In other words, every Peano system is isomorphic to \(\mathbb{N} = (\mathbb{N}, 0, S) \).

Proof.

Let \((M, e, f)\) be a Peano system.
Define \(A = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\} \).

Then, by induction, \(A = M\).
\(\Phi(x) = \min\{n \mid f^n(e) = x\}\) is the desired isomorphism.
Dedekind’s theorem

It is well-known that Peano system is categorical in the following sense.

Theorem (Dedekind 1888)

Any two Peano system is isomorphic.

In other words, every Peano system is isomorphic to $\mathbb{N} = (\mathbb{N}, 0, S)$.

Proof.

Let (M, e, f) be a Peano system.

Define $A = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\}$.

Then, by induction, $A = M$.

$\phi(x) = \min\{n \mid f^n(e) = x\}$ is the desired isomorphism. □
Dedekind’s theorem

It is well-known that Peano system is categorical in the following sense.

Theorem (Dedekind 1888)

Any two Peano system is isomorphic.

In other words, every Peano system is isomorphic to \(\mathbb{N} = (\mathbb{N}, 0, S) \).

Proof.

Let \((M, e, f)\) be a Peano system.
Define \(A = \{ x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x \} \).
Then, by induction, \(A = M\).
\(\Phi(x) = \min\{n \mid f^n(e) = x\}\) is the desired isomorphism.
What is needed for second-order characterization?

The Peano categoricity theorem means that "Peano system characterizes the natural number system."

In other words, the natural number system is second-order characterizable by using a successor function.

From the viewpoint of second-order characterization, Väänänen raised the following question.

Question (Jouko Väänänen)

Which axioms are needed to prove the Peano categoricity theorem in second-order arithmetic? (This should be weak.)

See, "Second order logic or set theory?" by Jouko Väänänen, to appear in BSL.

Let's do reverse mathematics!
What is needed for second-order characterization?

The Peano categoricity theorem means that “Peano system characterizes the natural number system.”

In other words, the natural number system is second-order characterizable by using a successor function.

From the viewpoint of second-order characterization, Väänänen raised the following question.

Question (Jouko Väänänen)

Which axioms are needed to prove the Peano categoricity theorem in second-order arithmetic? (This should be weak.)

See, “Second order logic or set theory?” by Jouko Väänänen, to appear in BSL.

Let’s do reverse mathematics!
What is needed for second-order characterization?

The Peano categoricity theorem means that “Peano system characterizes the natural number system.”

In other words, the natural number system is second-order characterizable by using a successor function.

From the viewpoint of second-order characterization, Väänänen raised the following question.

Question (Jouko Väänänen)

Which axioms are needed to prove the Peano categoricity theorem in second-order arithmetic? (This should be weak.)

See, “Second order logic or set theory?” by Jouko Väänänen, to appear in BSL.

Let’s do reverse mathematics!
What is needed for second-order characterization?

The Peano categoricity theorem means that “Peano system characterizes the natural number system.”

In other words, the natural number system is second-order characterizable by using a successor function.

From the viewpoint of second-order characterization, Väänänen raised the following question.

Question (Jouko Väänänen)

Which axioms are needed to prove the Peano categoricity theorem in second-order arithmetic? (This should be weak.)

See, “Second order logic or set theory?” by Jouko Väänänen, to appear in BSL.

Let’s do reverse mathematics!
What is needed for second-order characterization?

The Peano categoricity theorem means that “Peano system characterizes the natural number system.”

In other words, the natural number system is second-order characterizable by using a successor function.

From the viewpoint of second-order characterization, Väänänen raised the following question.

Question (Jouko Väänänen)

Which axioms are needed to prove the Peano categoricity theorem in second-order arithmetic? (This should be weak.)

See, “Second order logic or set theory?” by Jouko Väänänen, to appear in BSL.

Let’s do reverse mathematics!
Subsystems of second-order arithmetic

Language of second order arithmetic (\mathcal{L}_2):

- number variables: x, y, z, \ldots
- set variables: X, Y, Z, \ldots
- constants and functions: $0, 1, +, \cdot$
- relations: $=, <, \in$

Review (Big five plus one)

- **RCA$_0$**: basic axioms: “discrete ordered semi-ring”
 + Σ^0_1 induction + recursive comprehension.
- **WWKL$_0$**: RCA$_0$ + weak weak König’s lemma.
- **WKL$_0$**: RCA$_0$ + weak König’s lemma.
- **ACA$_0$**: RCA$_0$ + arithmetical comprehension.
- **ATR$_0$**: RCA$_0$ + arithmetical transfinite recursion.
- **Π^1_1CA$_0$**: RCA$_0$ + Π^1_1-comprehension.
Theorem

The following are provable within RCA₀.

1. The structure theorem for finitely generated abelian group.
2. Mean value theorem.
3. Implicit function theorem.
4. Taylor’s expansion theorem for holomorphic function.
5. The Riemann mapping theorem for a polygonal region.
6. . .
Theorem

The following are provable within RCA₀.

1. The structure theorem for finitely generated abelian group.
2. Mean value theorem.
3. Implicit function theorem.
4. Taylor’s expansion theorem for holomorphic function.
5. The Riemann mapping theorem for a polygonal region.
6. . .
Theorem

The following are provable within RCA$_0$.

1. The structure theorem for finitely generated abelian group.
2. Mean value theorem.
3. Implicit function theorem.
4. Taylor’s expansion theorem for holomorphic function.
5. The Riemann mapping theorem for a polygonal region.
6. . . .
Theorem

The following are provable within RCA₀.

1. The structure theorem for finitely generated abelian group.
2. Mean value theorem.
3. Implicit function theorem.
4. Taylor’s expansion theorem for holomorphic function.
5. The Riemann mapping theorem for a polygonal region.
6. ...

Reverse Mathematics

Theorem

The following are equivalent over RCA₀.

1. WKL₀.
2. Completeness theorem/ compactness theorem.
3. Uniqueness of algebraic closures of a countable field.
5. The Cauchy integral theorem for a Jordan curve.
6. The Riemann mapping theorem for a Jordan region.
7. . . .
The following are equivalent over RCA_0.

1. WKL_0.

2. Completeness theorem/ compactness theorem.

3. Uniqueness of algebraic closures of a countable field.

5. The Cauchy integral theorem for a Jordan curve.

6. The Riemann mapping theorem for a Jordan region.

7. . . .
Theorem

The following are equivalent over RCA₀.

1. WKL₀.
2. Completeness theorem/ compactness theorem.
3. Uniqueness of algebraic closures of a countable field.
5. The Cauchy integral theorem for a Jordan curve.
6. The Riemann mapping theorem for a Jordan region.
7. . . .
Theorem

The following are equivalent over RCA₀.

1. WKL₀.
2. Completeness theorem/ compactness theorem.
3. Uniqueness of algebraic closures of a countable field.
5. The Cauchy integral theorem for a Jordan curve.
6. The Riemann mapping theorem for a Jordan region.
7. ...
The following are equivalent over RCA₀.

1. ACA₀.
2. Ramsey’s theorem: RTₙ for n ∈ ω.
3. Every countable commutative ring has a maximal ideal.
4. Every normal family 𝐹_𝐃, i.e., 𝐹 is a family of uniformly bounded holomorphic functions on a common domain D ⊆ ℂ, has a uniformly convergent sub sequence.
5. The Riemann mapping theorem (over WKL₀).
6. . .
The following are equivalent over RCA₀.

1. ACA₀.
2. Ramsey’s theorem: RTₙ for n ∈ ω.
3. Every countable commutative ring has a maximal ideal.
4. Every normal family F_D, i.e., F is a family of uniformly bounded holomorphic functions on a common domain $D \subseteq \mathbb{C}$, has a uniformly convergent subsequence.
5. The Riemann mapping theorem (over WKL₀).
6. ...
The following are equivalent over RCA₀.

1. ACA₀.
2. Ramsey’s theorem: RTₙ for n ∈ ω.
3. Every countable commutative ring has a maximal ideal.
4. Every normal family \(\mathcal{F}_D \), i.e., \(\mathcal{F} \) is a family of uniformly bounded holomorphic functions on a common domain \(D \subseteq \mathbb{C} \), has a uniformly convergent sub sequence.
5. The Riemann mapping theorem (over WKL₀).
Theorem

The following are equivalent over RCA₀.

1. ACA₀.
2. Ramsey’s theorem: RTₙ for n ∈ ω.
3. Every countable commutative ring has a maximal ideal.
4. Every normal family Fₗ, i.e., F is a family of uniformly bounded holomorphic functions on a common domain D ⊆ ℂ, has a uniformly convergent subsequence.
5. The Riemann mapping theorem (over WKL₀).
6. . .
Theorem (Harrington)

Either RCA_0 or WKL_0 is a Π^1_1-conservative extension of $\text{I} \Sigma_1$.

Theorem (Friedman)

Either RCA_0 or WKL_0 is a Π^0_2-conservative extension of Primitive Recursive Arithmetic (PRA). Thus, they are proof-theoretically equivalent to PRA.

Theorem

ACA_0 is a Π^1_1-conservative extension of PA.
Reverse Mathematics

Theorem (Harrington)

Either RCA_0 or WKL_0 is a Π^1_1-conservative extension of $\text{I} \Sigma_1$.

Theorem (Friedman)

Either RCA_0 or WKL_0 is a Π^0_2-conservative extension of Primitive Recursive Arithmetic (PRA). Thus, they are proof-theoretically equivalent to PRA.

Theorem

ACA_0 is a Π^1_1-conservative extension of PA.
Theorem (Harrington)

Either RCA_0 or WKL_0 is a Π^1_1-conservative extension of $\text{I}\Sigma_1$.

Theorem (Friedman)

Either RCA_0 or WKL_0 is a Π^0_2-conservative extension of Primitive Recursive Arithmetic (PRA). Thus, they are proof-theoretically equivalent to PRA.

Theorem

ACA_0 is a Π^1_1-conservative extension of PA.
Outline

1 Introduction
 - Peano system
 - Reverse Mathematics

2 RM of Peano categoricity
 - over RCA_0
 - over RCA_0^*

3 Other categoricity theorems
 - system of order
 - system of order and successor function
A Peano system is a triple \((M, e, f)\) where \(M \subseteq \mathbb{N}\), \(e \in M\) and \(f : M \to M\) is a function such that

1. \(f\) is one-to-one,
2. \(\forall x \in M \ f(x) \neq e,\)
3. induction: for any \(Z \subseteq M,
 \[(e \in Z \land \forall x \in Z (f(x) \in Z)) \to \forall x (x \in Z). \]

Note that \(\text{RCA}_0\) proves \(\mathbb{N} = (\mathbb{N}, 0, S)\) is a Peano system.

A Peano system \((M, e, f)\) is said to be isomorphic to \(\mathbb{N}\) if there exists a bijective function \(\Phi : M \to \mathbb{N}\) such that \(\Phi(e) = 0\) and \(\Phi(f(x)) = \Phi(x) + 1\).
A Peano system is a triple \((M, e, f)\) where \(M \subseteq \mathbb{N}\), \(e \in M\) and \(f : M \to M\) is a function such that

1. \(f\) is one-to-one,
2. \(\forall x \in M \ f(x) \neq e\),
3. induction: for any \(Z \subseteq M\),

\[
(e \in Z \land \forall x \in Z(f(x) \in Z)) \to \forall x(x \in Z).
\]

Note that \(\text{RCA}_0\) proves \(\mathbb{N} = (\mathbb{N}, 0, S)\) is a Peano system.

A Peano system \((M, e, f)\) is said to be isomorphic to \(\mathbb{N}\) if there exists a bijective function \(\Phi : M \to \mathbb{N}\) such that \(\Phi(e) = 0\) and \(\Phi(f(x)) = \Phi(x) + 1\).
Definition (RCA₀)

A Peano system is a triple \((M, e, f)\) where \(M \subseteq \mathbb{N}\), \(e \in M\) and \(f : M \rightarrow M\) is a function such that

1. \(f\) is one-to-one,
2. \(\forall x \in M f(x) \neq e\),
3. induction: for any \(Z \subseteq M\),

\[(e \in Z \land \forall x \in Z(f(x) \in Z)) \rightarrow \forall x (x \in Z).

Note that RCA₀ proves \(\mathbb{N} = (\mathbb{N}, 0, S)\) is a Peano system.

Definition (RCA₀)

A Peano system \((M, e, f)\) is said to be isomorphic to \(\mathbb{N}\) if there exists a bijective function \(\Phi : M \rightarrow \mathbb{N}\) such that \(\Phi(e) = 0\) and \(\Phi(f(x)) = \Phi(x) + 1\).
What is needed for PCT?

PCT: every Peano system is isomorphic to \(\mathbb{N} \).

Observation

ACA\(_0\) proves PCT.

Proof.

Let \((M, e, f)\) be a Peano system.
Define \(A = \{ x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x \} \).
Then, by induction, \(A = M \).
\(\Phi(x) = \min\{n \mid f^n(e) = x\} \) is the desired isomorphism.

Then, does the converse hold?
\(\Rightarrow \) No!
What is needed for PCT?

PCT: every Peano system is isomorphic to \mathbb{N}.

Observation

ACA$_0$ proves PCT.

Proof.

Let (M, e, f) be a Peano system.
Define $A = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\}$.
Then, by induction, $A = M$.
$\Phi(x) = \min\{n \mid f^n(e) = x\}$ is the desired isomorphism.

Then, does the converse hold?
\Rightarrow No!
What is needed for PCT?

PCT: every Peano system is isomorphic to \(\mathbb{N} \).

Observation

ACA\(_0\) proves PCT.

Proof.

Let \((M, e, f)\) be a Peano system.

Define \(A = \{ x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x \} \).

Then, by induction, \(A = M \).

\(\Phi(x) = \min\{n \mid f^n(e) = x\} \) is the desired isomorphism.

Then, does the converse hold?

\(\Rightarrow \) No!

\[\square \]
What is needed for PCT?

PCT: every Peano system is isomorphic to \(\mathbb{N} \).

Observation

ACA\(_0\) proves PCT.

Proof.

Let \((M, e, f)\) be a Peano system.

Define \(A = \{ x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x \} \).

Then, by induction, \(A = M \).

\(\Phi(x) = \min\{n \mid f^n(e) = x\} \) is the desired isomorphism.

Then, does the converse hold?

\(\Rightarrow \) No!
What is needed for PCT?

PCT: every Peano system is isomorphic to \mathbb{N}.

Observation

ACA$_0$ proves PCT.

Proof.

Let (M, e, f) be a Peano system. Define $A = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\}$. Then, by induction, $A = M$. $\Phi(x) = \min\{n \mid f^n(e) = x\}$ is the desired isomorphism.

Then, does the converse hold?
\implies No!
What is needed for PCT?

PCT: every Peano system is isomorphic to \mathbb{N}.

Observation

ACA$_0$ proves PCT.

Proof.

Let (M, e, f) be a Peano system.

Define $A = \{x \in M \mid \exists n \in \mathbb{N} \; f^n(e) = x\}$.

Then, by induction, $A = M$.

$\Phi(x) = \min\{n \mid f^n(e) = x\}$ is the desired isomorphism.

Then, does the converse hold?

\Rightarrow No!
What is needed for PCT?

Definition (RCA₀)

A Peano system \((M, e, f)\) is said to be almost isomorphic to \(\mathbb{N}\) if for any \(x \in M\) there exists a sequence \(\langle a_i \mid i \leq k \rangle\) such that \(a_0 = e\), \(a_k = x\) and \(a_{i+1} = f(a_i)\) for any \(i < k\).

wPCT: every Peano system is almost isomorphic to \(\mathbb{N}\).
ISO: every Peano system which is almost isomorphic to \(\mathbb{N}\) is isomorphic to \(\mathbb{N}\).

Then,

\[\text{PCT} = \text{wPCT} + \text{ISO}.\]
What is needed for PCT?

Definition (RCA₀)

A Peano system \((M, e, f)\) is said to be almost isomorphic to \(\mathbb{N}\) if for any \(x \in M\) there exists a sequence \(\langle a_i \mid i \leq k \rangle\) such that \(a_0 = e\), \(a_k = x\) and \(a_{i+1} = f(a_i)\) for any \(i < k\).

\[\text{wPCT: every Peano system is almost isomorphic to } \mathbb{N}.\]

\[\text{ISO: every Peano system which is almost isomorphic to } \mathbb{N} \text{ is isomorphic to } \mathbb{N}.\]

Then,

\[\text{PCT} = \text{wPCT} + \text{ISO}.\]
What is needed for PCT?

Definition (RCA$_0$)

A Peano system (M, e, f) is said to be almost isomorphic to \mathbb{N} if for any $x \in M$ there exists a sequence $\langle a_i \mid i \leq k \rangle$ such that $a_0 = e$, $a_k = x$ and $a_{i+1} = f(a_i)$ for any $i < k$.

wPCT: every Peano system is almost isomorphic to \mathbb{N}.

ISO: every Peano system which is almost isomorphic to \mathbb{N} is isomorphic to \mathbb{N}.

Then,

$$\text{PCT} = \text{wPCT} + \text{ISO}.$$
Definition (RCA₀)

A Peano system \((M, e, f)\) is said to be almost isomorphic to \(\mathbb{N}\) if for any \(x \in M\) there exists a sequence \(\langle a_i \mid i \leq k \rangle\) such that \(a_0 = e, a_k = x\) and \(a_{i+1} = f(a_i)\) for any \(i < k\).

wPCT: every Peano system is almost isomorphic to \(\mathbb{N}\).
ISO: every Peano system which is almost isomorphic to \(\mathbb{N}\) is isomorphic to \(\mathbb{N}\).

Then,

\[\text{PCT} = \text{wPCT} + \text{ISO}.\]
What is needed for PCT?

Lemma

\(\text{RCA}_0 \) proves ISO.

Proof.

Let \((M, e, f)\) be a Peano system which is almost isomorphic to \(\mathbb{N}\). Then, \(M = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\}\).

Thus, \(\Phi(x) = \min\{n \mid f^n(e) = x\}\) is the desired isomorphism.
What is needed for PCT?

Lemma

RCA\textsubscript{0} proves ISO.

Proof.

Let \((M, e, f)\) be a Peano system which is almost isomorphic to \(\mathbb{N}\). Then, \(M = \{x \in M \mid \exists n \in \mathbb{N} \ f^n(e) = x\}\). Thus, \(\Phi(x) = \min\{n \mid f^n(e) = x\}\) is the desired isomorphism.
What is needed for PCT?

Theorem

\[\text{WKL}_0 \text{ proves } \text{wPCT}. \]

Proof.

Assume \((M, e, f)\) is not almost isomorphic to \(\mathbb{N}\). Then, there exists \(c \in M\) such that \(f^n(e) \neq c\) for any \(n \in \mathbb{N}\). Define a tree \(T \subseteq 2^{<\mathbb{N}}\) as follows:

\[
T = \{ \sigma \mid e < |\sigma| \rightarrow \sigma(e) = 1, \ c < |\sigma| \rightarrow \sigma(c) = 0, \\
(x, y \in M \land x, y < |\sigma| \land f(x) = y) \rightarrow \sigma(x) = \sigma(y) \}
\]

Then, \(T\) is infinite, thus, \(T\) has a path \(h\).

Let \(A = \{ x \in M \mid h(x) = 1 \}\). Then, \(e \in A\) and \(A\) is closed under \(f\), but \(c \notin A\). Thus, \((M, e, f)\) is not a Peano system. \(\square\)
What is needed for PCT?

Theorem

WKL_0 proves $wPCT$.

Proof.

Assume (M, e, f) is not almost isomorphic to \mathbb{N}. Then, there exists $c \in M$ such that $f^n(e) \neq c$ for any $n \in \mathbb{N}$.

Define a tree $T \subseteq 2^{<\mathbb{N}}$ as follows:

$$T = \{ \sigma \mid e < |\sigma| \rightarrow \sigma(e) = 1, \quad c < |\sigma| \rightarrow \sigma(c) = 0,$$

$$(x, y \in M \land x, y < |\sigma| \land f(x) = y) \rightarrow \sigma(x) = \sigma(y) \}$$

Then, T is infinite, thus, T has a path h.

Let $A = \{ x \in M \mid h(x) = 1 \}$. Then, $e \in A$ and A is closed under f, but $c \notin A$. Thus, (M, e, f) is not a Peano system.
Theorem

\(\text{WKL}_0 \) proves \(w\text{PCT} \).

Proof.

Assume \((M, e, f)\) is not almost isomorphic to \(\mathbb{N} \). Then, there exists \(c \in M \) such that \(f^n(e) \neq c \) for any \(n \in \mathbb{N} \).

Define a tree \(T \subseteq 2^{\mathbb{N}} \) as follows:

\[
T = \{ \sigma \mid e < |\sigma| \rightarrow \sigma(e) = 1, \ c < |\sigma| \rightarrow \sigma(c) = 0, \\
(x, y \in M \land x, y < |\sigma| \land f(x) = y) \rightarrow \sigma(x) = \sigma(y) \}\]

Then, \(T \) is infinite, thus, \(T \) has a path \(h \).

Let \(A = \{ x \in M \mid h(x) = 1 \} \). Then, \(e \in A \) and \(A \) is closed under \(f \), but \(c \notin A \). Thus, \((M, e, f)\) is not a Peano system.
What is needed for PCT?

Theorem

WKL_0 proves $w\text{PCT}$.

Proof.

Assume (M, e, f) is not almost isomorphic to \mathbb{N}. Then, there exists $c \in M$ such that $f^n(e) \neq c$ for any $n \in \mathbb{N}$. Define a tree $T \subseteq 2^{<\mathbb{N}}$ as follows:

$$T = \{\sigma \mid e < |\sigma| \to \sigma(e) = 1, \ c < |\sigma| \to \sigma(c) = 0, \ (x, y \in M \land x, y < |\sigma| \land f(x) = y) \to \sigma(x) = \sigma(y)\}$$

Then, T is infinite, thus, T has a path h.

Let $A = \{x \in M \mid h(x) = 1\}$. Then, $e \in A$ and A is closed under f, but $c \notin A$. Thus, (M, e, f) is not a Peano system.
What is needed for PCT?

Theorem

WKL_0 proves $wPCT$.

Proof.

Assume (M, e, f) is not almost isomorphic to \mathbb{N}.
Then, there exists $c \in M$ such that $f^n(e) \neq c$ for any $n \in \mathbb{N}$.
Define a tree $T \subseteq 2^{\mathbb{N}}$ as follows:

\[
T = \{ \sigma \mid e < |\sigma| \rightarrow \sigma(e) = 1, \ c < |\sigma| \rightarrow \sigma(c) = 0, \ (x, y \in M \land x, y < |\sigma| \land f(x) = y) \rightarrow \sigma(x) = \sigma(y) \}
\]

Then, T is infinite, thus, T has a path h.
Let $A = \{ x \in M \mid h(x) = 1 \}$. Then, $e \in A$ and A is closed under f, but $c \notin A$. Thus, (M, e, f) is not a Peano system.
What is needed for PCT?

Theorem

\(WKL_0 \) proves \(\text{wPCT} \).

Proof.

Assume \((M, e, f)\) is not almost isomorphic to \(\mathbb{N} \). Then, there exists \(c \in M \) such that \(f^n(e) \neq c \) for any \(n \in \mathbb{N} \). Define a tree \(T \subseteq 2^{<\mathbb{N}} \) as follows:

\[
T = \{ \sigma \mid e < |\sigma| \rightarrow \sigma(e) = 1, \ c < |\sigma| \rightarrow \sigma(c) = 0, \ (x, y \in M \land x, y < |\sigma| \land f(x) = y) \rightarrow \sigma(x) = \sigma(y) \}
\]

Then, \(T \) is infinite, thus, \(T \) has a path \(h \).

Let \(A = \{ x \in M \mid h(x) = 1 \} \). Then, \(e \in A \) and \(A \) is closed under \(f \), but \(c \notin A \). Thus, \((M, e, f)\) is not a Peano system. \(\square \)
What is needed for PCT?

Theorem

WKL$_0$ proves $wPCT$.

Proof.

Assume (M, e, f) is not almost isomorphic to \mathbb{N}. Then, there exists $c \in M$ such that $f^n(e) \neq c$ for any $n \in \mathbb{N}$. Define a tree $T \subseteq 2^{<\mathbb{N}}$ as follows:

$$T = \{ \sigma \mid e < |\sigma| \rightarrow \sigma(e) = 1, \; c < |\sigma| \rightarrow \sigma(c) = 0, \; (x, y \in M \land x, y < |\sigma| \land f(x) = y) \rightarrow \sigma(x) = \sigma(y) \}$$

Then, T is infinite, thus, T has a path h.

Let $A = \{ x \in M \mid h(x) = 1 \}$. Then, $e \in A$ and A is closed under f, but $c \notin A$. Thus, (M, e, f) is not a Peano system.

\qed
What is needed for PCT?

Theorem

Over RCA₀, wPCT implies WKL₀.

Proof.

We show \(\neg \text{WKL} \rightarrow \neg \text{wPCT}. \)

Let \(T \subseteq 2^{\mathbb{N}} \) be an infinite tree which has no infinite path.

Then, there exists \(n \in \mathbb{N} \) such that \(1^n \notin T \).

Let \(\tau_0 \) be the shortest such string, and let \(\bar{T} = T \cup \{1^n \mid n \in \mathbb{N}\} \).

Consider the lexicographic order \(<_{lx} \) on \(\bar{T} \), and let \(f : \bar{T} \rightarrow \bar{T} \) be a successor function with respect to this order.

Note that \(f \) can be defined by \(\Delta^0_1\)-CA, since \(f(\sigma) \) is one of \(\{\sigma \uparrow 0, \sigma \uparrow 1\} \cup \{\sigma \uparrow i \uparrow 1 \mid i < |\sigma|\} \).

Then, \((\bar{T}, \langle \rangle, f) \) is a Peano system by the following claim, and it is not almost isomorphic to \(\mathbb{N} \) since \(\forall n \in \mathbb{N} \ f^n(\langle \rangle) \neq \tau_0 \).
What is needed for PCT?

Theorem

Over \(\text{RCA}_0 \), \(\text{wPCT} \) implies \(\text{WKL}_0 \).

Proof.

We show \(\neg \text{WKL} \rightarrow \neg \text{wPCT} \).

Let \(T \subseteq 2^{<\mathbb{N}} \) be an infinite tree which has no infinite path. Then, there exists \(n \in \mathbb{N} \) such that \(1^n \notin T \).

Let \(\tau_0 \) be the shortest such string, and let \(\tilde{T} = T \cup \{1^n | n \in \mathbb{N}\} \).

Consider the lexicographic order \(<_{lx} \) on \(\tilde{T} \), and let \(f : \tilde{T} \rightarrow \tilde{T} \) be a successor function with respect to this order.

Note that \(f \) can be defined by \(\Delta^0_1 \)-CA, since \(f(\sigma) \) is one of \(\{\sigma \upharpoonright 0, \sigma \upharpoonright 1\} \cup \{\sigma \upharpoonright i \upharpoonright 1 | i < |\sigma|\} \).

Then, \((\tilde{T}, \langle \rangle, f) \) is a Peano system by the following claim, and it is not almost isomorphic to \(\mathbb{N} \) since \(\forall n \in \mathbb{N} \ f^n(\langle \rangle) \neq \tau_0 \).
What is needed for PCT?

Theorem

Over RCA₀, wPCT implies WKL₀.

Proof.

We show \(\neg WKL \rightarrow \neg wPCT. \)

Let \(T \subseteq 2^{<\mathbb{N}} \) be an infinite tree which has no infinite path.

Then, there exists \(n \in \mathbb{N} \) such that \(1^n \notin T \).

Let \(\tau_0 \) be the shortest such string, and let \(\bar{T} = T \cup \{1^n \mid n \in \mathbb{N}\}. \)

Consider the lexicographic order \(<_{lx} \) on \(\bar{T} \), and let \(f : \bar{T} \rightarrow \bar{T} \) be a successor function with respect to this order.

Note that \(f \) can be defined by \(\Delta^0_1 \)-CA, since \(f(\sigma) \) is one of \(\{\sigma \upharpoonright 0, \sigma \upharpoonright 1\} \cup \{\sigma \upharpoonright i \upharpoonright 1 \mid i < |\sigma|\}. \)

Then, \((\bar{T}, \langle \rangle, f) \) is a Peano system by the following claim, and it is not almost isomorphic to \(\mathbb{N} \) since \(\forall n \in \mathbb{N} f^n(\langle \rangle) \neq \tau_0. \)
What is needed for PCT?

Theorem

Over RCA₀, wPCT implies WKL₀.

Proof.

We show \(\neg WKL \rightarrow \neg wPCT. \)

Let \(T \subseteq 2^{<\mathbb{N}} \) be an infinite tree which has no infinite path.

Then, there exists \(n \in \mathbb{N} \) such that \(1^n \notin T. \)

Let \(\tau_0 \) be the shortest such string, and let \(\bar{T} = T \cup \{1^n | n \in \mathbb{N}\}. \)

Consider the lexicographic order \(<_{lx} \) on \(\bar{T} \), and let \(f : \bar{T} \rightarrow \bar{T} \) be a successor function with respect to this order.

Note that \(f \) can be defined by \(\Delta^0_1 \)-CA, since \(f(\sigma) \) is one of \(\{\sigma \upharpoonright 0, \sigma \upharpoonright 1\} \cup \{\sigma \upharpoonright i \upharpoonright 1 | i < |\sigma|\}. \)

Then, \((\bar{T}, \langle \rangle, f)\) is a Peano system by the following claim, and it is not almost isomorphic to \(\mathbb{N} \) since \(\forall n \in \mathbb{N} f^n(\langle \rangle) \neq \tau_0. \)
What is needed for PCT?

Theorem

Over RCA$_0$, wPCT implies WKL$_0$.

Proof.

We show \negWKL $\rightarrow \neg$wPCT.
Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite tree which has no infinite path. Then, there exists $n \in \mathbb{N}$ such that $1^n \notin T$.
Let τ_0 be the shortest such string, and let $\bar{T} = T \cup \{1^n \mid n \in \mathbb{N}\}$.
Consider the lexicographic order $<_{lx}$ on \bar{T}, and let $f : \bar{T} \rightarrow \bar{T}$ be a successor function with respect to this order.
Note that f can be defined by Δ^0_1-CA, since $f(\sigma)$ is one of \{\sigma \uparrow 0, \sigma \uparrow 1\} \cup \{\sigma \uparrow i \uparrow 1 \mid i < |\sigma|\}.

Then, $(\bar{T}, \langle \rangle, f)$ is a Peano system by the following claim, and it is not almost isomorphic to \mathbb{N} since $\forall n \in \mathbb{N} f^n(\langle \rangle) \neq \tau_0$.
What is needed for PCT?

Theorem

Over RCA₀, wPCT implies WKL₀.

Proof.

We show $\neg \text{WKL} \rightarrow \neg \text{wPCT}$.

Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite tree which has no infinite path.

Then, there exists $n \in \mathbb{N}$ such that $1^n \notin T$.

Let τ_0 be the shortest such string, and let $\bar{T} = T \cup \{1^n \mid n \in \mathbb{N}\}$.

Consider the lexicographic order $<_\text{lx}$ on \bar{T}, and let $f : \bar{T} \rightarrow \bar{T}$ be a successor function with respect to this order.

Note that f can be defined by Δ^0_1-CA, since $f(\sigma)$ is one of $\{\sigma \upharpoonright 0, \sigma \upharpoonright 1\} \cup \{\sigma \upharpoonright i \upharpoonright 1 \mid i < |\sigma|\}$.

Then, $(\bar{T}, \langle \rangle, f)$ is a Peano system by the following claim, and it is not almost isomorphic to \mathbb{N} since $\forall n \in \mathbb{N} \ f^n(\langle \rangle) \neq \tau_0$.

What is needed for PCT?

Theorem

Over RCA$_0$, wPCT implies WKL$_0$.

Proof.

We show \(\neg \text{WKL} \rightarrow \neg \text{wPCT} \).
Let \(T \subseteq 2^{<\mathbb{N}} \) be an infinite tree which has no infinite path.
Then, there exists \(n \in \mathbb{N} \) such that \(1^n \notin T \).
Let \(\tau_0 \) be the shortest such string, and let \(\bar{T} = T \cup \{1^n \mid n \in \mathbb{N}\} \).
Consider the lexicographic order \(<_{lx} \) on \(\bar{T} \), and let \(f : \bar{T} \rightarrow \bar{T} \) be a successor function with respect to this order.
Note that \(f \) can be defined by \(\Delta^0_1 \)-CA, since \(f(\sigma) \) is one of
\(\{\sigma \upharpoonright 0, \sigma \upharpoonright 1\} \cup \{\sigma \upharpoonright i \upharpoonright 1 \mid i < |\sigma|\} \).
Then, \((\bar{T}, \langle \rangle, f) \) is a Peano system by the following claim,
and it is not almost isomorphic to \(\mathbb{N} \) since \(\forall n \in \mathbb{N} \ f^n(\langle \rangle) \neq \tau_0 \).
What is needed for PCT?

Theorem

Over RCA_0, wPCT implies WKL_0.

Proof.

We show $\neg \text{WKL} \rightarrow \neg \text{wPCT}$.
Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite tree which has no infinite path. Then, there exists $n \in \mathbb{N}$ such that $1^n \not\in T$.
Let τ_0 be the shortest such string, and let $\bar{T} = T \cup \{1^n \mid n \in \mathbb{N}\}$.
Consider the lexicographic order $<_{lx}$ on \bar{T}, and let $f : \bar{T} \rightarrow \bar{T}$ be a successor function with respect to this order.
Note that f can be defined by Δ^0_1-CA, since $f(\sigma)$ is one of $\{\sigma \upharpoonright 0, \sigma \upharpoonright 1\} \cup \{\sigma \upharpoonright i \upharpoonright 1 \mid i < |\sigma|\}$.
Then, $(\bar{T}, \langle \rangle, f)$ is a Peano system by the following claim, and it is not almost isomorphic to \mathbb{N} since $\forall n \in \mathbb{N} \ f^n(\langle \rangle) \neq \tau_0$.

What is needed for PCT?

Proof (continued).

Claim: there is no $A \subseteq \tilde{T}$ such that $\langle \rangle \in A$ and A is closed under f.

If such A exists, take $\tau \in \tilde{T} \setminus A$, and let $\tilde{A} = \{ \sigma \in A \mid \sigma \prec_{lx} \tau \}$. Then, \tilde{A} is closed under f, and $\tilde{A} \subseteq T$.

Define $h : \mathbb{N} \to 2^{<\mathbb{N}}$ as $h(0) = \langle \rangle$ and

$$h(n + 1) = \begin{cases} h(n)^1 & \text{if } h(n)^1 \in \tilde{A}, \\ h(n)^0 & \text{otherwise.} \end{cases}$$

Then, $h(n) \in \tilde{A} \subseteq T$ for any $n \in \mathbb{N}$, since if $h(n)^1 \notin \tilde{A}$ then $h(n)^0 = f(h(n)) \in \tilde{A}$, but we assumed that T has no path. □

Corollary.

PCT is equivalent to WKL$_0$ over RCA$_0$.
Proof (continued).

Claim: there is no $A \subseteq \tilde{T}$ such that $\langle \rangle \in A$ and A is closed under f.

If such A exists, take $\tau \in \tilde{T} \setminus A$, and let $\tilde{A} = \{ \sigma \in A \mid \sigma <_{lx} \tau \}$.

Then, \tilde{A} is closed under f, and $\tilde{A} \subseteq T$.

Define $h : \mathbb{N} \rightarrow 2^{<\mathbb{N}}$ as $h(0) = \langle \rangle$ and

$$h(n + 1) = \begin{cases} h(n) \uparrow 1 & \text{if } h(n) \uparrow 1 \in \tilde{A}, \\ h(n) \uparrow 0 & \text{otherwise}. \end{cases}$$

Then, $h(n) \in \tilde{A} \subseteq T$ for any $n \in \mathbb{N}$, since if $h(n) \uparrow 1 \notin \tilde{A}$ then $h(n) \uparrow 0 = f(h(n)) \in \tilde{A}$, but we assumed that T has no path.

Corollary

PCT is equivalent to WKL$_0$ over RCA$_0$.

K. Yokoyama

RM of Peano categoricity

19 / 42
Proof (continued).

Claim: there is no \(A \subseteq \bar{T} \) such that \(\langle \rangle \in A \) and \(A \) is closed under \(f \).

If such \(A \) exists, take \(\tau \in \bar{T} \setminus A \), and let \(\tilde{A} = \{ \sigma \in A \mid \sigma <_{lx} \tau \} \).

Then, \(\tilde{A} \) is closed under \(f \), and \(\tilde{A} \subseteq T \).

Define \(h : \mathbb{N} \to 2^{\mathbb{N}} \) as \(h(0) = \langle \rangle \) and

\[
h(n + 1) = \begin{cases} h(n) \upharpoonright 1 & \text{if } h(n) \upharpoonright 1 \in \tilde{A}, \\ h(n) \upharpoonright 0 & \text{otherwise}. \end{cases}
\]

Then, \(h(n) \in \tilde{A} \subseteq T \) for any \(n \in \mathbb{N} \), since if \(h(n) \upharpoonright 1 \notin \tilde{A} \) then \(h(n) \upharpoonright 0 = f(h(n)) \in \tilde{A} \), but we assumed that \(T \) has no path. \(\square \)

Corollary

PCT is equivalent to WKL\(_0\) over RCA\(_0\).
What is needed for PCT?

Proof (continued).

Claim: there is no $A \subseteq \tilde{T}$ such that $\langle \rangle \in A$ and A is closed under f.

If such A exists, take $\tau \in \tilde{T} \setminus A$, and let $\tilde{A} = \{ \sigma \in A \mid \sigma <_I \tau \}$.

Then, \tilde{A} is closed under f, and $\tilde{A} \subseteq T$.

Define $h : \mathbb{N} \to 2^{<\mathbb{N}}$ as $h(0) = \langle \rangle$ and

$$h(n + 1) = \begin{cases} h(n) \upharpoonright 1 & \text{if } h(n) \upharpoonright 1 \in \tilde{A}, \\ h(n) \upharpoonright 0 & \text{otherwise}. \end{cases}$$

Then, $h(n) \in \tilde{A} \subseteq T$ for any $n \in \mathbb{N}$, since if $h(n) \upharpoonright 1 \notin \tilde{A}$ then $h(n) \upharpoonright 0 = f(h(n)) \in \tilde{A}$, but we assumed that T has no path. \qed

Corollary

PCT is equivalent to WKL$_0$ over RCA$_0$.
What is needed for PCT?

Proof (continued).

Claim: there is no $A \subseteq \tilde{T}$ such that $\langle \rangle \in A$ and A is closed under f.

If such A exists, take $\tau \in \tilde{T} \setminus A$, and let $\tilde{A} = \{ \sigma \in A \mid \sigma <_{lx} \tau \}$.

Then, \tilde{A} is closed under f, and $\tilde{A} \subseteq T$.

Define $h : \mathbb{N} \to 2^{<\mathbb{N}}$ as $h(0) = \langle \rangle$ and

$$h(n + 1) = \begin{cases} h(n)\upharpoonright 1 & \text{if } h(n)\upharpoonright 1 \in \tilde{A}, \\ h(n)\upharpoonright 0 & \text{otherwise}. \end{cases}$$

Then, $h(n) \in \tilde{A} \subseteq T$ for any $n \in \mathbb{N}$, since if $h(n)\upharpoonright 1 \notin \tilde{A}$ then $h(n)\upharpoonright 0 = f(h(n)) \in \tilde{A}$, but we assumed that T has no path.

Corollary

PCT is equivalent to WKL$_0$ over RCA$_0$.

K. Yokoyama
RM of Peano categoricity
What is needed for PCT?

Proof (continued).

Claim: there is no $A \subseteq \tilde{T}$ such that $\langle \rangle \in A$ and A is closed under f.

If such A exists, take $\tau \in \tilde{T} \setminus A$, and let $\tilde{A} = \{ \sigma \in A \mid \sigma <_{lx} \tau \}$.

Then, \tilde{A} is closed under f, and $\tilde{A} \subseteq T$.

Define $h : \mathbb{N} \to 2^{<\mathbb{N}}$ as $h(0) = \langle \rangle$ and

$$h(n + 1) = \begin{cases} h(n)\upharpoonright 1 & \text{if } h(n)\upharpoonright 1 \in \tilde{A}, \\ h(n)\upharpoonright 0 & \text{otherwise}. \end{cases}$$

Then, $h(n) \in \tilde{A} \subseteq T$ for any $n \in \mathbb{N}$, since if $h(n)\upharpoonright 1 \notin \tilde{A}$ then $h(n)\upharpoonright 0 = f(h(n)) \in \tilde{A}$, but we assumed that T has no path.

Corollary

PCT is equivalent to WKL_0 over RCA_0. ⌣
What is needed for PCT?

Proof (continued).

Claim: there is no $A \subseteq \tilde{T}$ such that $\langle \rangle \in A$ and A is closed under f.

If such A exists, take $\tau \in \tilde{T} \setminus A$, and let $\tilde{A} = \{ \sigma \in A | \sigma <_{lx} \tau \}$.

Then, \tilde{A} is closed under f, and $\tilde{A} \subseteq T$.

Define $h : \mathbb{N} \rightarrow 2^{<\mathbb{N}}$ as $h(0) = \langle \rangle$ and

$$h(n + 1) = \begin{cases} h(n) \upharpoonright 1 & \text{if } h(n) \upharpoonright 1 \in \tilde{A}, \\ h(n) \upharpoonright 0 & \text{otherwise.} \end{cases}$$

Then, $h(n) \in \tilde{A} \subseteq T$ for any $n \in \mathbb{N}$, since if $h(n) \upharpoonright 1 \notin \tilde{A}$ then $h(n) \upharpoonright 0 = f(h(n)) \in \tilde{A}$, but we assumed that T has no path.

Corollary

PCT is equivalent to WKL$_0$ over RCA$_0$.

□
The strength of PCT

Review

\[\text{WKL}_0 \text{ is a } \Pi^0_2\text{-conservative extension of Primitive Recursive Arithmetic (PRA), thus, it is proof-theoretically equivalent to PRA.} \]

Thus, we can say the following:

“We can characterize/redefine the natural number system by a successor function in a weak standpoint.”

Question

Is \(\text{WKL}_0 \) exactly the weakest in the sense of proof-theoretic strength?

Yes, in the following sense.
WKL₀ is a Π^0_2-conservative extension of Primitive Recursive Arithmetic (PRA), thus, it is proof-theoretically equivalent to PRA.

Thus, we can say the following:

“We can characterize/redefine the natural number system by a successor function in a weak standpoint.”

Is WKL₀ exactly the weakest in the sense of proof-theoretic strength?

Yes, in the following sense.
The strength of PCT

Review

WKL_0 is a Π^0_2-conservative extension of Primitive Recursive Arithmetic (PRA), thus, it is proof-theoretically equivalent to PRA.

Thus, we can say the following:

“We can characterize/redefine the natural number system by a successor function in a weak standpoint.”

Question

Is WKL_0 exactly the weakest in the sense of proof-theoretic strength?

Yes, in the following sense.
The strength of PCT

Review

\(\text{WKL}_0 \) is a \(\Pi^0_2 \)-conservative extension of Primitive Recursive Arithmetic (PRA), thus, it is proof-theoretically equivalent to PRA.

Thus, we can say the following:

“We can characterize/redefine the natural number system by a successor function in a weak standpoint.”

Question

Is \(\text{WKL}_0 \) exactly the weakest in the sense of proof-theoretic strength?

Yes, in the following sense.
We weaken the base system.

Review (Big five)

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA_0</td>
<td>basic axioms: “discrete ordered semi-ring” + Σ^0_1 induction + recursive comprehension.</td>
</tr>
<tr>
<td>WKL_0</td>
<td>RCA_0 + weak König’s lemma.</td>
</tr>
<tr>
<td>ACA_0</td>
<td>RCA_0 + arithmetical comprehension.</td>
</tr>
<tr>
<td>ATR_0</td>
<td>RCA_0 + arithmetical transfinite recursion.</td>
</tr>
<tr>
<td>$\Pi^1_1\text{CA}_0$</td>
<td>RCA_0 + Π^1_1-comprehension.</td>
</tr>
</tbody>
</table>
RM in a weaker base system

We weaken the base system.

Definition

- **RCA\(^*\)_0**: basic axioms: “discrete ordered semi-ring”
 + “for any \(x\), \(2^x\) exists” + \(\Sigma^0_0\)-induction
 + recursive comprehension.
- **RCA\(_0\)**: RCA\(^*\)_0 + \(\Sigma^0_1\)-induction.
- **WKL\(^*\)_0**: RCA\(^*\)_0 + weak König’s lemma.
- **WKL\(_0\)**: RCA\(_0\) + weak König’s lemma.
- **ACA\(_0\)**: RCA\(^*\)_0 + arithmetical comprehension.
- **ATR\(_0\)**: RCA\(^*\)_0 + arithmetical transfinite recursion.
- **\(\Pi^1_1\)CA\(_0\)**: RCA\(^*\)_0 + \(\Pi^1_1\)-comprehension.
Theorem (Simpson-Smith)

The following are equivalent over RCA_0^*.

1. RCA_0.
2. Bounded Σ^0_1-comprehension.
3. For every countable field K, every polynomial $f(x) \in K[x]$ has only finitely many roots in K.
4. Every finitely generated vector space over a countable field has a basis.
5. Every finitely generated torsion-free abelian group is of the form \mathbb{Z}^n.
Theorem (Simpson-Smith)

The following are equivalent over RCA_0^*.

1. RCA_0.
2. Bounded Σ^0_1-comprehension.
3. For every countable field K, every polynomial $f(x) \in K[x]$ has only finitely many roots in K.
4. Every finitely generated vector space over a countable field has a basis.
5. Every finitely generated torsion-free abelian group is of the form \mathbb{Z}^n.
Theorem (Simpson-Smith)

The following are equivalent over RCA*

1. RCA0.
2. Bounded \(\Sigma^0_1 \)-comprehension.
3. For every countable field \(K \), every polynomial \(f(x) \in K[x] \) has only finitely many roots in \(K \).
4. Every finitely generated vector space over a countable field has a basis.
5. Every finitely generated torsion-free abelian group is of the form \(\mathbb{Z}^n \).
Theorem (Simpson-Smith)

The following are equivalent over RCA_0^*.

1. RCA_0.
2. Bounded Σ^0_1-comprehension.
3. For every countable field K, every polynomial $f(x) \in K[x]$ has only finitely many roots in K.
4. Every finitely generated vector space over a countable field has a basis.
5. Every finitely generated torsion-free abelian group is of the form \mathbb{Z}^n.

K. Yokoyama
Theorem (Nemoto)

The following are equivalent over RCA$_0^*$.

1. WKL$_0^*$.
2. Σ^0_1-determinacy in Cantor space.
3. Δ^0_1-determinacy in Cantor space.
4. Δ^0_1-complete determinacy in Cantor space.
The following are equivalent over RCA_0^*.

1. WKL_0^*.
2. Σ^0_1-determinacy in Cantor space.
3. Δ^0_1-determinacy in Cantor space.
4. Δ^0_1-complete determinacy in Cantor space.
The following are equivalent over RCA₀*.

1. WKL₀*.
2. Σ^0_1-determinacy in Cantor space.
3. Δ^0_1-determinacy in Cantor space.
4. Δ^0_1-complete determinacy in Cantor space.
Theorem (Nemoto)

The following are equivalent over RCA$_0^*$.

1. WKL_0^*.
2. Σ^0_1-determinacy in Cantor space.
3. Δ^0_1-determinacy in Cantor space.
4. Δ^0_1-complete determinacy in Cantor space.
Theorem (Simpson-Smith)

Either RCA_0^* or WKL_0^* is a Π^1_1-conservative extension of $\text{BS}_{1} + \exp$.

Theorem (Simpson-Smith)

Either RCA_0^* or WKL_0^* is a Π^0_2-conservative extension of Elementary Function Arithmetic (EFA).

Thus, they are proof-theoretically equivalent to EFA, which is weaker than PRA.
Theorem (Simpson-Smith)

Either RCA_0^* or WKL_0^* is a Π^1_1-conservative extension of $\text{B} \Sigma_1 + \text{exp}$.

Theorem (Simpson-Smith)

Either RCA_0^* or WKL_0^* is a Π^0_2-conservative extension of Elementary Function Arithmetic (EFA). Thus, they are proof-theoretically equivalent to EFA, which is weaker than PRA.
What is needed for PCT?

We have already proved that $wPCT$ is equivalent to WKL_0 over RCA_0.

In fact, we can prove the following.

Theorem

$wPCT$ is equivalent to WKL_0^* over RCA_0^*.

On the other hand, we can refine the following lemma.

Lemma (review)

RCA_0 proves ISO.

Theorem

ISO is equivalent to RCA_0 over RCA_0^*.
What is needed for PCT?

We have already proved that \(wPCT \) is equivalent to \(\text{WKL}_0 \) over \(\text{RCA}_0 \).
In fact, we can prove the following.

Theorem

\(wPCT \) is equivalent to \(\text{WKL}^*_0 \) over \(\text{RCA}^*_0 \).

On the other hand, we can refine the following lemma.

Lemma (review)

\(\text{RCA}_0 \) proves \(\text{ISO} \).

Theorem

\(\text{ISO} \) is equivalent to \(\text{RCA}_0 \) over \(\text{RCA}^*_0 \).
What is needed for PCT?

We have already proved that \(wPCT \) is equivalent to \(WKL_0 \) over \(\text{RCA}_0 \).
In fact, we can prove the following.

Theorem

\(wPCT \) is equivalent to \(WKL_0^* \) over \(\text{RCA}_0^* \).

On the other hand, we can refine the following lemma.

Lemma (review)

\(\text{RCA}_0 \) proves ISO.

Theorem

ISO is equivalent to \(\text{RCA}_0 \) over \(\text{RCA}_0^* \).
What is needed for PCT?

We have already proved that $wPCT$ is equivalent to WKL_0 over RCA_0.
In fact, we can prove the following.

Theorem

$wPCT$ is equivalent to WKL_0^* over RCA_0^*.

On the other hand, we can refine the following lemma.

Lemma (review)

RCA_0 proves ISO.

Theorem

ISO is equivalent to RCA_0 over RCA_0^*.
What is needed for PCT?

Proof.

We have already proved $\text{RCA}_0 \rightarrow \text{ISO}$.

To show $\text{ISO} \rightarrow \text{RCA}_0$, we only need to show that for any infinite subset $A \subseteq \mathbb{N}$, there exists a one-to-one function $h : \mathbb{N} \rightarrow A$. (This is equivalent to Σ^0_1-induction.)

For given infinite $A \subseteq \mathbb{N}$, define $e = \min A$ and $f(x) = \min\{y \in A \mid y > x\}$.

Then, (A, e, f) is a Peano system which is almost isomorphic to \mathbb{N}. Thus, isomorphism $\Phi^{-1} : \mathbb{N} \rightarrow A$ is a one-to-one function. □
What is needed for PCT?

Proof.

We have already proved $\text{RCA}_0 \rightarrow \text{ISO}$.

To show $\text{ISO} \rightarrow \text{RCA}_0$, we only need to show that for any infinite subset $A \subseteq \mathbb{N}$, there exists a one-to-one function $h : \mathbb{N} \rightarrow A$. (This is equivalent to Σ^0_1-induction.)

For given infinite $A \subseteq \mathbb{N}$, define $e = \min A$ and $f(x) = \min\{y \in A \mid y > x\}$.

Then, (A, e, f) is a Peano system which is almost isomorphic to \mathbb{N}. Thus, isomorphism $\Phi^{-1} : \mathbb{N} \rightarrow A$ is a one-to-one function. \qed
What is needed for PCT?

Proof.

We have already proved $\text{RCA}_0 \rightarrow \text{ISO}$.

To show $\text{ISO} \rightarrow \text{RCA}_0$, we only need to show that for any infinite subset $A \subseteq \mathbb{N}$, there exists a one-to-one function $h : \mathbb{N} \rightarrow A$.

(This is equivalent to Σ^0_1-induction.)

For given infinite $A \subseteq \mathbb{N}$, define $e = \min A$ and $f(x) = \min\{y \in A \mid y > x\}$.

Then, (A, e, f) is a Peano system which is almost isomorphic to \mathbb{N}. Thus, isomorphism $\Phi^{-1} : \mathbb{N} \rightarrow A$ is a one-to-one function. \square
What is needed for PCT?

Proof.

We have already proved $\text{RCA}_0 \rightarrow \text{ISO}$.

To show $\text{ISO} \rightarrow \text{RCA}_0$, we only need to show that for any infinite subset $A \subseteq \mathbb{N}$, there exists a one-to-one function $h : \mathbb{N} \rightarrow A$. (This is equivalent to Σ^0_1-induction.)

For given infinite $A \subseteq \mathbb{N}$, define $e = \min A$ and $f(x) = \min\{y \in A \mid y > x\}$.

Then, (A, e, f) is a Peano system which is almost isomorphic to \mathbb{N}. Thus, isomorphism $\Phi^{-1} : \mathbb{N} \rightarrow A$ is a one-to-one function. \qed
What is needed for PCT?

Proof.

We have already proved $\text{RCA}_0 \rightarrow \text{ISO}$.

To show $\text{ISO} \rightarrow \text{RCA}_0$, we only need to show that for any infinite subset $A \subseteq \mathbb{N}$, there exists a one-to-one function $h : \mathbb{N} \rightarrow A$. (This is equivalent to Σ^0_1-induction.)

For given infinite $A \subseteq \mathbb{N}$, define $e = \min A$ and $f(x) = \min\{y \in A \mid y > x\}$.

Then, (A, e, f) is a Peano system which is almost isomorphic to \mathbb{N}. Thus, isomorphism $\Phi^{-1} : \mathbb{N} \rightarrow A$ is a one-to-one function. \qed
The strength of PCT

Corollary

PCT is equivalent to WKL₀ over RCA₀*. In fact, PCT splits as follows.

\[
\begin{align*}
\text{PCT} & = \text{ISO} + \text{wPCT} \\
\vdots & \quad \vdots \\
\text{WKL₀} & = \text{RCA₀} + \text{WKL₀}^*.
\end{align*}
\]

Thus, we can say the following:

“To characterize/redefine the natural number system by a successor function, the primitive recursion/ \(\Sigma^0_1 \)-induction is essentially needed.”
The strength of PCT

Corollary

\textbf{PCT is equivalent to WKL}_0 \textit{ over } RCA^*_0.\textbf{.}

\textit{In fact, PCT splits as follows.}

\begin{align*}
PCT &= \text{ISO} + \text{wPCT.} \\
\vdots &= \vdots \\
\text{WKL}_0 &= \text{RCA}_0 + \text{WKL}^*_0.
\end{align*}

Thus, we can say the following:

“To characterize/redefine the natural number system by a successor function, the primitive recursion/ \(\Sigma^0_1 \)-induction is essentially needed.”
The strength of PCT

Corollary

PCT is equivalent to WKL\(_0\) over RCA\(_0^*\).

In fact, PCT splits as follows.

\[
\begin{align*}
\text{PCT} & = \text{ISO} + \text{wPCT}. \\
\vdots & \vdots \\
\text{WKL}_{0} & = \text{RCA}_0 + \text{WKL}_{0}^*.
\end{align*}
\]

Thus, we can say the following:

“To characterize/redefine the natural number system by a successor function, the primitive recursion/ \(\Sigma^0_1\)-induction is essentially needed.”
The strength of PCT

Corollary

PCT is equivalent to WKL\(_0\) over RCA\(^*_0\).

In fact, PCT splits as follows.

\[
\begin{align*}
\text{PCT} & = \text{ISO} + \text{wPCT}, \\
\vdots & \\
\text{WKL}_{0} & = \text{RCA}_{0} + \text{WKL}_{0}^*.
\end{align*}
\]

Thus, we can say the following:

“To characterize/redefine the natural number system by a successor function, the primitive recursion/ \(\Sigma^0_1\)-induction is essentially needed.”
The strength of PCT

Corollary

PCT is equivalent to WKL$_0$ over RCA$_0^*$. In fact, PCT splits as follows.

\[
\begin{align*}
\text{PCT} & = \text{ISO} + \text{wPCT}, \\
\vdots & \\
\text{WKL}_0 & = \text{RCA}_0 + \text{WKL}_0^*.
\end{align*}
\]

Thus, we can say the following:

“To characterize/redefine the natural number system by a successor function, the primitive recursion/ Σ^0_1-induction is essentially needed.”
Outline

1. Introduction
 - Peano system
 - Reverse Mathematics

2. RM of Peano categoricity
 - over RCA₀
 - over RCA₀^*

3. Other categoricity theorems
 - system of order
 - system of order and successor function
Inductive ordered system

We can characterize the natural number system by using a linear order.

Definition (RCA₀*)

An ordered system is a triple \((M, e, <)\) where \(M \subseteq \mathbb{N}\), \(e \in M\) and \(< \subseteq M \times M\) is a relation such that

1. \(<\) is a linear order, and \(e\) is the minimum element,
2. for any \(x \in M\), the successor \(x' := \min\{y \in M \mid x < y\}\) exists,

Note that the successor function \(f(x) = x'\) may not exist.
Inductive ordered system

We can characterize the natural number system by using a linear order.

Definition (RCAₘ₀)

An ordered system is a triple \((M, e, <)\) where \(M \subseteq \mathbb{N}\), \(e \in M\) and \(< \subseteq M \times M\) is a relation such that

1. \(<\) is a linear order, and \(e\) is the minimum element,
2. for any \(x \in M\), the successor \(x' := \min\{y \in M \mid x < y\}\) exists,

Note that the successor function \(f(x) = x'\) may not exist.
Inductive ordered system

Definition (RCA*₀)

An ordered system \((M, e, <)\) is said to be inductive if it satisfies the following:

- (induction): for any \(Z \subseteq M\),

\[(e \in Z \land \forall x \in Z (x' \in Z)) \rightarrow \forall x (x \in Z). \]

An ordered system \((M, e, <)\) is said to be strongly inductive if it satisfies the following:

- (maximal/minimal element): for any \(Z \subseteq M\), if there exists \(a \in M\) such that \(\forall x \in Z \; x < a\), then, \(\max Z\) and \(\min Z\) exist.

Proposition (RCA*₀)

Strongly inductive ordered system is inductive.
Definition (RCA\(_0^*\))

An ordered system \((M, e, <)\) is said to be inductive if it satisfies the following:

- (induction): for any \(Z \subseteq M\),
 \[
 (e \in Z \land \forall x \in Z (x' \in Z)) \rightarrow \forall x (x \in Z).
 \]

An ordered system \((M, e, <)\) is said to be strongly inductive if it satisfies the following:

- (maximal/minimal element): for any \(Z \subseteq M\), if there exists \(a \in M\) such that \(\forall x \in Z x < a\), then, \(\max Z\) and \(\min Z\) exist.

Proposition (RCA\(_0^*\))

Strongly inductive ordered system is inductive.
An ordered system \((M, e, <)\) is said to be isomorphic to \(\mathbb{N}\) if there exists a bijective homomorphism \(\Phi : M \rightarrow \mathbb{N}\).

An ordered system \((M, e, <)\) is said to be almost isomorphic to \(\mathbb{N}\) if for any \(x \in M\) there exists a sequence \(\langle a_i \mid i \leq k \rangle\) such that \(a_0 = e, a_k = x\) and \(a_{i+1} = a_i'\) for any \(i < k\).
Inductive ordered system

Definition (RCA₀*)

An ordered system \((M, e, \prec)\) is said to be isomorphic to \(\mathbb{N}\) if there exists a bijective homomorphism \(\Phi : M \rightarrow \mathbb{N}\).

An ordered system \((M, e, \prec)\) is said to be almost isomorphic to \(\mathbb{N}\) if for any \(x \in M\) there exists a sequence \(\langle a_i \mid i \leq k \rangle\) such that \(a_0 = e, a_k = x\) and \(a_{i+1} = a_i'\) for any \(i < k\).

Then,
Isomorphism of ordered systems

Theorem

The following are equivalent over RCA\(^*\).

1. ACA\(_0\).
2. Every inductive ordered system is isomorphic to \(\mathbb{N}\).
3. Every strongly inductive ordered system is isomorphic to \(\mathbb{N}\).
4. Every inductive ordered system which is almost isomorphic to \(\mathbb{N}\) is isomorphic to \(\mathbb{N}\).
5. Every strongly inductive ordered system which is almost isomorphic to \(\mathbb{N}\) is isomorphic to \(\mathbb{N}\).

Proof.

1 \(\rightarrow\) 2 is easy. 2 \(\rightarrow\) 3, 4, 5 is trivial. 5 \(\rightarrow\) 1...
Isomorphism of ordered systems

Theorem

The following are equivalent over RCA$_0^*$.

1. ACA$_0$.

2. Every inductive ordered system is isomorphic to \mathbb{N}.

3. Every strongly inductive ordered system is isomorphic to \mathbb{N}.

4. Every inductive ordered system which is almost isomorphic to \mathbb{N} is isomorphic to \mathbb{N}.

5. Every strongly inductive ordered system which is almost isomorphic to \mathbb{N} is isomorphic to \mathbb{N}.

Proof.

$1 \rightarrow 2$ is easy. $2 \rightarrow 3,4,5$ is trivial. $5 \rightarrow 1$...
Definition (RCA*_0)

Let $(L, <_L)$ be a countable linear ordering.

1. $(L, <_L)$ is said to be *pseudofinite* if every nonempty subset of L has a first element and a last element.

2. Let $X \subseteq L$. A *left (right) boundary point* of X is an element $a \in X$ such that there is no $c <_L a$ ($c >_L a$) with

$$\{b \mid c \leq_L b \leq_L a\} \subseteq X \quad (\{b \mid a \leq_L b \leq_L c\} \subseteq X).$$

$L, <_L$ is said to be *quasifinite* if each nonempty subset of L has a left boundary point and a right boundary point.
PFO and QFO

Definition

1. **PFO**: every countable pseudofinite linear ordering is finite.
 \[PFO_0 = RCA_0 + PFO, \quad PFO^*_0 = RCA^*_0 + PFO. \]

2. **QFO**: every countable pseudofinite linear ordering is finite.
 \[QFO_0 = RCA_0 + QFO, \quad QFO^*_0 = RCA^*_0 + QFO. \]

Proposition (RCA\(^*_0\), by Shore and Hirschfeldt)

PFO\(_0\) is equivalent to **ADS**\(_0\) = RCA\(_0\) + **ADS**.

Proposition (RCA\(^*_0\))

QFO\(^*_0\) implies **PFO**\(^*_0\) and **WKL**\(^*_0\).
QFO\(_0\) implies **ACA**\(_0\) [R. Shore, in private communication].
PFO and QFO

Definition

1. PFO: every countable pseudofinite linear ordering is finite.
 \[PFO_0 = RCA_0 + PFO, \quad PFO_0^* = RCA_0^* + PFO. \]

2. QFO: every countable pseudofinite linear ordering is finite.
 \[QFO_0 = RCA_0 + QFO, \quad QFO_0^* = RCA_0^* + QFO. \]

Proposition (RCA\(^*_0\), by Shore and Hirschfeldt)

\[PFO_0 \text{ is equivalent to } ADS_0 = RCA_0 + ADS. \]

Proposition (RCA\(^*_0\))

\[QFO_0^* \text{ implies } PFO_0^* \text{ and } WKL_0^*. \]
\[QFO_0 \text{ implies } ACA_0 \text{ [R. Shore, in private communication].} \]

PFO and QFO

Definition

1. **PFO**: every countable pseudofinite linear ordering is finite.

 \[\text{PFO}_0 = \text{RCA}_0 + \text{PFO}, \quad \text{PFO}_0^* = \text{RCA}_0^* + \text{PFO}.\]

2. **QFO**: every countable pseudofinite linear ordering is finite.

 \[\text{QFO}_0 = \text{RCA}_0 + \text{QFO}, \quad \text{QFO}_0^* = \text{RCA}_0^* + \text{QFO}.\]

Proposition (RCA\(_0^*\), by Shore and Hirschfeldt)

\[\text{PFO}_0 \text{ is equivalent to } \text{ADS}_0 = \text{RCA}_0 + \text{ADS}.\]

Proposition (RCA\(_0^*\))

\[\text{QFO}_0^* \text{ implies } \text{PFO}_0^* \text{ and } \text{WKL}_0^*.\]

\[\text{QFO}_0 \text{ implies } \text{ACA}_0 \quad [\text{R. Shore, in private communication}].\]
Almost isomorphism of ordered systems

Theorem

The following are equivalent over RCA_0^*.

1. PFO_0^*.
2. Every strongly inductive ordered system is almost isomorphic to \mathbb{N}.

Theorem

The following are equivalent over RCA_0^*.

1. QFO_0^*.
2. Every inductive ordered system is almost isomorphic to \mathbb{N}.
Almost isomorphism of ordered systems

Theorem

The following are equivalent over RCA_0^*.

1. PFO_0^*.
2. Every strongly inductive ordered system is almost isomorphic to \mathbb{N}.

Theorem

The following are equivalent over RCA_0^*.

1. QFO_0^*.
2. Every inductive ordered system is almost isomorphic to \mathbb{N}.
Finally, we characterize the natural number system by using an order and a successor function.

Definition (RCA$_0^*$)

An ordered successor system is a quadruple $(M, e, f, <)$ where $(M, e, <)$ is an ordered system, and f is its successor function.

Definition (RCA$_0^*$)

- An ordered successor system $(M, e, f, <)$ is said to be inductive if $(M, e, <)$ is inductive.
- An ordered successor system $(M, e, f, <)$ is said to be strongly inductive if $(M, e, <)$ is strongly inductive.
Inductive ordered successor system

Finally, we characterize the natural number system by using an order and a successor function.

Definition (RCA$_0^*$)*

An ordered successor system is a quadruple $(M, e, f, <)$ where $(M, e, <)$ is an ordered system, and f is its successor function.

Definition (RCA$_0^*$)*

- An ordered successor system $(M, e, f, <)$ is said to be inductive if $(M, e, <)$ is inductive.
- An ordered successor system $(M, e, f, <)$ is said to be strongly inductive if $(M, e, <)$ is strongly inductive.
Finally, we characterize the natural number system by using an order and a successor function.

Definition (RCA₀*)

An ordered successor system is a quadruple \((M, e, f, <)\) where \((M, e, <)\) is an ordered system, and \(f\) is its successor function.

Definition (RCA₀*)

- An ordered successor system \((M, e, f, <)\) is said to be inductive if \((M, e, <)\) is inductive.
- An ordered successor system \((M, e, f, <)\) is said to be strongly inductive if \((M, e, <)\) is strongly inductive.
Inductive ordered successor system

Theorem

The following are equivalent over RCA*_0.

1. WKL*_0.
2. Every inductive ordered successor system is almost isomorphic to \mathbb{N}.

Theorem

The following are equivalent over RCA*_0.

1. RCA$_0$.
2. Every strongly inductive ordered successor system is isomorphic to \mathbb{N}.
3. Every (strongly) inductive ordered successor system which is almost isomorphic to \mathbb{N} is isomorphic to \mathbb{N}.
Inductive ordered successor system

Theorem

The following are equivalent over \(\text{RCA}_0^* \).

1. \(\text{WKL}_0^* \).
2. Every inductive ordered successor system is almost isomorphic to \(\mathbb{N} \).

Theorem

The following are equivalent over \(\text{RCA}_0^* \).

1. \(\text{RCA}_0 \).
2. Every strongly inductive ordered successor system is isomorphic to \(\mathbb{N} \).
3. Every (strongly) inductive ordered successor system which is almost isomorphic to \(\mathbb{N} \) is isomorphic to \(\mathbb{N} \).
Summary

<table>
<thead>
<tr>
<th>(over RCA_0^*)</th>
<th>isomorphic</th>
<th>almost iso \Rightarrow iso</th>
<th>almost isomorphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.s.s. (Peano)</td>
<td>WKL_0</td>
<td>RCA_0</td>
<td>WKL_0^*</td>
</tr>
<tr>
<td>i.o.s.</td>
<td>ACA_0</td>
<td>ACA_0</td>
<td>QFO_0^*</td>
</tr>
<tr>
<td>si.o.s.</td>
<td>ACA_0</td>
<td>ACA_0</td>
<td>PFO_0^*</td>
</tr>
<tr>
<td>i.o.s.s.</td>
<td>WKL_0</td>
<td>RCA_0</td>
<td>WKL_0^*</td>
</tr>
<tr>
<td>si.o.s.s.</td>
<td>RCA_0</td>
<td>RCA_0</td>
<td>$??????$</td>
</tr>
</tbody>
</table>

Table: Summary of results.
Summary

<table>
<thead>
<tr>
<th>(over RCA₀)</th>
<th>isomorphic</th>
<th>almost iso ⇒ iso</th>
<th>almost isomorphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.s.s. (Peano)</td>
<td>WKL₀</td>
<td>RCA₀</td>
<td>WKL₀</td>
</tr>
<tr>
<td>i.o.s.</td>
<td>ACA₀</td>
<td>ACA₀</td>
<td>QFO₀ = ACA₀</td>
</tr>
<tr>
<td>si.o.s.</td>
<td>ACA₀</td>
<td>ACA₀</td>
<td>PFO₀ = ADS₀</td>
</tr>
<tr>
<td>i.o.s.s.</td>
<td>WKL₀</td>
<td>RCA₀</td>
<td>WKL₀</td>
</tr>
<tr>
<td>si.o.s.s.</td>
<td>RCA₀</td>
<td>RCA₀</td>
<td>RCA₀</td>
</tr>
</tbody>
</table>

Table: Summary of results.
Open questions

PFO\(_0\) is equivalent to RCA\(_0\) + ADS.
Actually it is equivalent to RCA\(_\ast\)\(_0\) + ADS since ADS implies \(\Sigma^0_1\)-IND.

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the proof-theoretic strength of PFO(_\ast)?</td>
</tr>
<tr>
<td>Is it (\Pi^1_1) conservative over RCA(_\ast)?</td>
</tr>
</tbody>
</table>

QFO\(_0\) is equivalent to ACA\(_0\).
QFO\(_\ast\)\(_0\) implies both of ADS\(_\ast\)\(_0\) and WKL\(_\ast\)\(_0\).
However, we don’t know whether QFO\(_\ast\)\(_0\) proves \(\Sigma^0_1\)-IND or not.

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the proof-theoretic strength of QFO(_\ast)?</td>
</tr>
</tbody>
</table>
PFO\textsubscript{0} is equivalent to RCA\textsubscript{0} + ADS. Actually it is equivalent to RCA\textsubscript{0} + ADS since ADS implies Σ^0_1-IND.

Question

What is the proof-theoretic strength of PFO\textsubscript{0} + ADS? Is it Π^1_1 conservative over RCA\textsubscript{0}?

QFO\textsubscript{0} is equivalent to ACA\textsubscript{0}. QFO\textsubscript{0} implies both of ADS\textsubscript{0} and WKL\textsubscript{0}. However, we don’t know whether QFO\textsubscript{0} proves Σ^0_1-IND or not.

Question

What is the proof-theoretic strength of QFO\textsubscript{0}?
PFO₀ is equivalent to RCA₀ + ADS. Actually it is equivalent to RCA₀⁺ + ADS since ADS implies Σ₁⁰-IND.

Question

What is the proof-theoretic strength of PFO₀⁺? Is it Π₁¹ conservative over RCA₀⁺?

QFO₀ is equivalent to ACA₀. QFO₀⁺ implies both of ADS₀⁺ and WKL₀⁺. However, we don’t know whether QFO₀⁺ proves Σ₁⁰-IND or not.

Question

What is the proof-theoretic strength of QFO₀⁺?
PFO₀ is equivalent to RCA₀ + ADS. Actually it is equivalent to RCA₀⁺ + ADS since ADS implies Σ^0_1-IND.

Question

What is the proof-theoretic strength of PFO₀⁺? Is it Π^1_1 conservative over RCA₀⁺?

QFO₀ is equivalent to ACA₀. QFO₀⁺ implies both of ADS₀⁺ and WKL₀⁺. However, we don’t know whether QFO₀⁺ proves Σ^0_1-IND or not.

Question

What is the proof-theoretic strength of QFO₀⁺?
Open questions

PFO_0 is equivalent to RCA_0 + ADS. Actually it is equivalent to RCA_0^* + ADS since ADS implies Σ^0_1-IND.

Question

What is the proof-theoretic strength of PFO_0^*? Is it Π^1_1 conservative over RCA_0^*?

QFO_0 is equivalent to ACA_0.
QFO_0^* implies both of ADS_0^* and WKL_0^*.
However, we don’t know whether QFO_0^* proves Σ^0_1-IND or not.

Question

What is the proof-theoretic strength of QFO_0^*?
Open questions

Almost isomorphism for strongly inductive ordered successor system is provable from RCA_0, WKL_0^* and PFO_0^*.

Question

What is the reverse-mathematical status of the statement that every strongly inductive ordered successor system is almost isomorphic to \mathbb{N}? Is it provable within RCA_0^*?

Question

Is the natural number system \mathbb{N} second-order characterizable within RCA_0^*?

For this, we want a second-order statement φ such that

- RCA_0^* proves \mathbb{N} satisfies φ.
- RCA_0^* proves the categoricity theorem for φ.
Open questions

Almost isomorphism for strongly inductive ordered successor system is provable from RCA_0, WKL_0^* and PFO_0^*.

Question

What is the reverse-mathematical status of the statement that every strongly inductive ordered successor system is almost isomorphic to \mathbb{N}? Is it provable within RCA_0^*?

Question

Is the natural number system \mathbb{N} second-order characterizable within RCA_0^*?

For this, we want a second-order statement φ such that

- RCA_0^* proves \mathbb{N} satisfies φ.
- RCA_0^* proves the categoricity theorem for φ.
Open questions

Almost isomorphism for strongly inductive ordered successor system is provable from RCA_0, WKL_0^* and PFO_0^*.

Question

What is the reverse-mathematical status of the statement that every strongly inductive ordered successor system is almost isomorphic to \mathbb{N}? Is it provable within RCA_0^*?

Question

Is the natural number system \mathbb{N} second-order characterizable within RCA_0^*?

For this, we want a second-order statement φ such that

- RCA_0^* proves \mathbb{N} satisfies φ.
- RCA_0^* proves the categoricity theorem for φ.